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ABSTRACT

The information capacity of Kanerva's Sparse, Distributed Memory (SDM) and Hopfield-type
neural networks is investigated. Under the approximations used here, it is shown that tire to-
tal information stored in these systems is proportional to the number connections in the net-
work. The proportionality constant is the same for the SDM and Hopfield-type models in-
dependent of the particular model, or the order of the model. The approximations are
checked numerically. This same analysis can be used to show that the SDM can store se-
quences of spatiotemporal patterns, and the addition of n'me-delayed connections allows the
retrieval of context dependent temporal patterns. A minor modification of the SDM can be
used to store correlated patterns.

INTRODUCTION

Many different models of memory and thought have been proposed by scientists over the
years. In (1943) McCulloch and Pitts proposed a simple model neuron with two states of activity
(on and off) and a large number of inputs.'Hebb (1949) considered a network of such neurons and
postulated mechanisms for changing synaptic strengths " to learn memories. The learning rule
considered here uses the outer-product of patterns of +Is and -Is. Anderson (1977) discussed the
effect of iterative feedback in such a system) Hopfield (1982) showed that for symmetric coo.r_c-
tions, 4 the dynamics of such a network is governed by an energy function that is analogous to the
energy function of a spin glass. 5 Numerous investigations have been carried out on similar
models. 6--8

Several limitations of these binary interaction, outer-product models have been pointed out.
For example, the number of patterns that can be stored in the system (its capacity) is limited to a
fraction of the length of the pattern vectors. Also, these models are not very successful at storing
correlated patterns or temporal sequences.

Other models have been proposed to overcome these limitations. For example, one can
allow higher-order interactions among the neurons. 9't° In the following, I focus on a model
developed by Kanerva (1984) called the Sparse, Distributed Memory (SDM) model. II The SDM
can be viewed as a three layer network that uses an outer-product learning between the second and
third layer. As discussed below, the SDM is more versatile than the above mentioned networks
because the number of stored patterns can increased independent of the length of the pattern, and
the SDM can be used to store spatiotemporal patterns with context retrieval, and store correlated
patterns.

The capacity limitations of outer-product models can be alleviated by usin.g higher-order
interaction models or the SDM, but a price must be paid for this added capacity m terms of an
increase in the number of connections, How much information is gained per connection? It is
shown in the following that the total information stored in each system is proportional to the
number of connections in the network, and that the proportionality constant is independent of the
particular model or the order of the model. This result also holds if the connections are limited to
one bit of precision (clipped weights). The analysis presented here requires certain simplifying
assumptions. The approximate results are compared numerically to an exact calculation developed
by Chou. 12

SIMPLE OUTER-PRODUCT NEURAL NETWORK MODEL

As an example or a simple first-order neural network model, I consider in detail the model
developed by Hopfield. 4 This model will be used to introduce the mathematics and the concepts
that will be generalized for the analysis of the SDM. The "neurons" are simple two-state



thresholddevices: The state of the i 's neuron, ui, is either either +1 (on), or -1 (off). Consider a
set of n such neuror_ with net input (local field), hi, to the i 'h neuron given by

n

h_ = _T_j uj, (l)
J

where Tij represents the interaction strength between the i 'h neuron and the j,s. The state of each
neuron is updated asynchronously (at random) according to the rule

Ul (-"g(hl), (2)

where the function g is a simple threshold function g (x) = sign (x).

Suppose we are given M randomly chosen patterns (strings of length n of ±Is) which we
wish to store in this system. Denote these M memory patterns as pattem vectors:
pa = (p _,p_ ..... p a), ct = 1,2,3 ..... M. For example, pt might look like
(+1,-1,+1,-1,-1 ..... +1). One method of storing these patterns is the outer-product (Hebbian) learn-
hag rule: Start with Tin0, and accumulate the outer-products of the pattem vectors. The resulting
connection matrix is given by

M

T,-_ = y_p,*p?, L, = 0. (3)
ct=l

The system described above is a dynamical system with attracting fixed points. To obtain
an approximate upper bound on the total information stored in this network, we sidestep the issue
of the basins of attraction, and we check to see if each of the patterns stored by Eq. (3) is actually
a fix.ed point of (2). Suppose.we ,a_e given one of the patterns, pP, say, as the initial configuration
ot me neurons. I will show mat p" is expected to be a fixed point of Eq. (2). After inserting (3)
for T into (1), the net input to the i '_' neuron becomes

M n

h, = Y.,/'p?].
c_=! j

The important term in the sum on o_ is the one for which o_ = [3. This term _epresents the "sig-
nal" between the input pc and the desired output. The rest of the sum represents "noise" result-
ing from crosstalk with all of the other stored patterns. The expression for the net input becomes
hi = signali + noisei where

N

sight, =p/'tE p? p?], (5)
J

M

no.el = _, pi_[ _ p? p?]. (6)

Summing on all of the Jk in (6) yields si&nali = (n-l)pi 15. Since n is positive, the sign of
the signal term and pi 15will be the same. Thus, if the noise term were exactly zero, the signal
would give the same sign as pi 13with a magnitude of = n_ and pl_ would be a fixed point of (2).
Moreover, patterns close to pP would give nearly the same 'signal. so that p13should be an attract-
ing fixed point.

For randomly chosen patterns, <noise> = O, where < > indicates statistical expectation, and
its variance will be o_ = (n-1)d(M-l). The probability that there will be an error on recall ofpi 13
is given by the probability that the noise is greater than the signal. For n large, the noise distribu-
tion is approximately gaussian, and the probability that there is an error in the i 'h bit is

oo

1
P" = 'I-2_0 I e-"a°_dx" (7)

Isi&nal I

INFORMATION CAPACITY

The number of patterns that can be stored in the network is known as its capacity. 13't4 How-
ever, for a fair comparison between all of the models discussed here, it is more relevant to com-
pare the total number of bits (total information) stored in each model rather than the number of



patterns.This allows comparison of information storage in models with different lengths of the
pattern vectors. If we view the memory model as a black box which receives input bit strings and
outputs them with some small probability of error in each bit, then the definition of bit-capacity
used here is exactly the definition of channel capacity used by Shannon./s

Define the bit-capacity as the number of bits that can be stored in a network with fixed pro-
bability of getting an error in a recalled bit, i.e. p, = constant in (10). Explicitly, the bit-capacity
is given by 76

B = bit capacity = nMq, (8)

where q = (1 +p, log2p, + (1-p,)log:(1-p,)). Note that q=l forp,=0. Setting p, to a constant is
tantamount to keeping the signal-to-noise ratio (fidelity) constant, where the fidelity, R, is given by
R = Isignall/o. Explicitly, the relation between (constant) p, and R, is just R = q>-l(l -p,),
where

R

q_(R) = (l/'2n:) _ fe-S2r2dt. (9)

Hence, the bit-capacity of these networks can be investigated by examining the fidelity of the
models as a function of n, M, and R. From (8) and (9) the fidelity of the Hopfield model is is
R 2 = n/(n(M-1)) '_ (n:_l). Solving for M in terms of (fixed) R and q, the bit-capacity becomes
B = q[(n2/R 2)+n ].

The results above can be generalized to models with d 'h order interactions, tT'ls The resulting
expression for the bit-capacity for d 'h order interaction models is just

nd+l

B = q[--_-+n ]. rio)

Hence, we see that the number of bits stored in the system increases with the order d. However,
to store these bits, one must pay a price by including more connections in the connection tensor.
To demonstrate the relationship between the number of connections and the information stored,
define the information capacity, y, to be the total information stored in the network divided by the
number of bits in the connection tensor (note that this is different than the definition used by Abu-
Mostafa et al.).19 Thus )" is just the bit-capacity divided by the number of bits in the tensor T,
and represents the efficiency with which information is stored in the network. Since T has n a+l
elements, the information capacity is found to be

?=-_ (11)
R2b '

where b is the number of bits of precision used per tensor element (b >- log2M for no clipping of
the weights). For large n, the information stored per neuronal connection is y = q/R 2b, indepen-
dent of the order of the model (compare this result to that of Peretto, et al.). 2° To illustrate this
point, suppose one decides that the maximum allowed probability of getting an error in a recalled
bit is p, = 1/1000, then this would fix the minimum value of R at 3.1. Thus, to store 10,000 bits
with a probability of getting an error of a recalled bit of 0.001, equation (15) states that it would
take =96,000b bits, independent of the order of the model, or -'0.In patterns can be stored with
probability 1/1000 of getting an error in a recalled bit.

KANERVA'S SDM

Now we focus out attention on Kanerva's Sparse, Distributed Memory model (SDM). II The
SDM can be viewed as a 3-layer network with the middle layer playing the role of hidden units.
To get an autoassociative network, the output layer can be fed back into the input layer, effectively
making this a two layer network. The first layer of the SDM is a layer of n, +1 input units (the
input address, a), the middle layer is a layer of m, hidden units, s, and the third layer consists of
the n +1 output units (the data, d). The connections between the input units and the hidden units
are random weights of +1 and are given by the m xn matrix A. The connections between the hid-
den units and the output units are given by the nxm connection matrix C, and these matrix ele-
ments are modified by an outer-product learning rule (C is analogous to the matrix T of the
Hopfield model).



Given an input pattern a, the hidden unit activations axe determined by

s = 0, (A a), (12)

where 0, is the Hamming-distance threshold function: The k'* element is 1 if the input a is at
most r Hamming units away from the k t* row in A, and 0 if it is further than r units away, i.e.,

{;if½(n-xi) -':_r0,(x)i = if ½(n--xi)>r. (13)

The hidden-units vector, or select vector, s, is mostly 0s with an average of 8m Is, where 8 is
some small number dependent on r; _1. Hence, s represents a large, sparsely coded vector of 0s
and 8Is representing the input address. The net input, h, to the final layer can he simply expressed
as the product of C with s:

h = Cs. (14)

Finally, the output data is given by d = g(h), where gi (hi) = sign (hi).

To store the M patterns, pl,p2,.., pU, form the outer-product of these pattern vectors and
their corresponding select vectors,

M

C = )--'.pasar' (15)
ot=l

where T denotes the transpose of the vector, and where each select vector is formed by the
corresponding address, sa= 0,(A pa). The storage algorithm (15) is an outer-product learning rule
similar to (3).

Suppose that the M patterns (pl,p2,... pS_) have been stored according to (15). Following
the analysis presented for the Hop field model, I show that if the system is presented with v _sas
input, the output will be p_, (i.e. p_' is a fixed point). Setting a = plS in (16) and separating terms
as before, the net input (18) becomes

M

h = d_(s_.s _) + y. p'_(s_.s_). (16)

where the first ffnpresentsterm the signal and the second is the noise. Recall that the select vecgors
have an average of Is and the remainder 0s, so that the expected value of the signal is 8rn sp.

Assuming that the addresses and data are randomly chosen, the expected value of the noise
is zero. To evaluate the fidelity, I make certain approximations. First, I assume that the select vec-
tors are independent of each other. Second, I assume that the variance of the signal alone is zero
or small compared to the variance of noise term alone. The first assumption will be valid for
m52<1, and the second assumption will be valid for MS:_l. With these assumptions, we can
easily calculate the variance of the noise term, because each of the select vectors are i.i.d, vectors
of length m with mostly 0s and =Sin Is. With these assumptions, the fidelity is given by

R2= m
[(M-l)(l-_$Zm(l-I/m))1" (17)

In the limit of large m, with 8m = constant, the number of stored bits scales as

mn

B = q[R2(l+82m ) + n]. (18)

If we divide this by the number of elements in C, we find the information capacity, y = q/R 2b,
just as before, so the information capacity is the same for the two m o_iels. (If we divide the bit
capacity by the number of elements in C and A then we get y = WR'(b+I), which is about the
same for large M.)

A few comments before we continue. First, it should he pointed out that the assumption
made by Kanerva 11 and Keeler '7'Is that the variance of the signal term is much less than that of
the noise is not valid over the entire range. If we took this into account, then the magnitude of the
denominator would he increased by the variance of the signal term. Further, if we read at a dis-
tance i away from the write address, then it is easy to see that the signal changes to be m _l),
where _(l) the overlap of two spheres of radius r length l apart in the binomial space n



(8 - 8(0) ). The fidelity for reading at a distance ! away from the write address is

R 2 = m 282(/)
m 5(1 )(1-5(! )) + (M - l)m 82+(M - 1)64m 2( l- 11m )'

(19)

Compare this to the formula derived by Chou, 12 for t_ exact signal-to-noise ratio:

R 2 = m282(l)
In 8(1 X 1-8(1 )) + (M - 1)ra _t_i +(M- 1)o_,m 2(1_ 1/m ))"

(20)

where _,, is the average overlap of the spheres of radius r binomially distributed with parameters
(n,l/2) _(i 02 is the squaaaa_of this overlap. The difference in these two formulas lies in the
denominator in the terms 8z verses g,,_. and 84 vs. o,2,. The difference comes from the fact that
Chou correctly calculates the overlap of the spheres without using the independence assumption.

How do these formula's differ? First of all, it is found numerically that 52 is identical with

g..,. Hence, the only difference comes from 84 verses o_.. For m82 _ 1, the 54 term is negligi-
ble compared to the other terms in the denominator. In addition, 54 and 02 are approximately
equal for large n and r-hi2. Hence, in the limit n--_- the two formulas agree over most of the
range if M"0.1m, m_2". However, for finite n, the two formulas can disagree when m82--1 (see
Figure 1).

O

Signal-to-Noise Ratios

3o ''"I''"[""I'"

2O

I0
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+ Eq. (17)

o Eq. (19)

Eq. (20)

,,,
20 40 60 80
Hamming Radius

Figure 1: A comparison of the fidelity calculations of the SDM for typical n, M, andre
values. Equation (17) was derived assuming no variance of the signal term, and is shown
by the + line. Equation (19) uses the approximation that all of the select vectors are
indepeladent denoted by the o line. Equatton (20) (*'s) is the exact derivation done by
Chou ". The values used here were n = 150, m = 2000, M = 100.



F_.quatJon(20)suggeststhatthe_._ois abestread-writeHammingradiusfortheSDM.By set-
ring I = 0 in (19) and by setting "_x = 0, we get an approximate expression for the best Ham-

ming radius: _= = (2Mm)-irJ. This" "trend is qualitatively shown in Figure 2.

Figure 2: Numerical investigation of the capacity of the SDM, The vertical axis is the per-
cent of recovered patterns with no errors. "The x.axis (left to fight) is the Hamming dis-
tance used for reading and writing. The y-axis (back to forward) is the number of patterns
that were written into the memory. For this investigation, n = 128, m = 1024, and M
ranges from 1 to 501. Note the similarity of a cross-section of this graph at constant M
with Figure 1. This calculation was performed by David Cohn at RIACS, NASA-Ames.

Figure 1 indicates that the formula (17) that neglected the variance of the signal term is
incorrect over much of the range. However, a variant of the SDM is to constrain the number of
selected locations to be constant; circuitry for doing this is easily built. 21 The variance of the sig-
nal term would be zero in that case, and the approximate expression for the fidelity is given by Eq
(17). There are certain problems where it would be better to keep 5 = constant, as in the case of
correlated patterns (see below).

The above analysis was done assuming that the elements (weights) in the outer-product
matrix ate not clipped i.e. that there are enough bits to store the largest value of any matrix ele-
ment. It is interesting to consider what happens if we allow these values to be represented by only
a few bits. If we consider the case case b = 1, i.e. the weights are clipped at one bit, it is easy
to show 17 that y=2q/nR 2 for the d _ order models and for the SDM, which yields y = 0.07 for rea-
sonable R, (this is substantially less than Willshaw's 0.69).



SEQUENCES

In an autoassociative memory, the system relaxes to one of the stored patterns and stays
fixed in time until a new input is presented. However, there are many problems where the recalled
patterns must change sequentially in time. For example, a song can be remembered as a string of
notes played in the correct sequence; cyclic patterns of muscle contractions are essential for walk-
ing, riding a bicycle, or dribbling a basketball. As a first step we consider the very simplistic
sequence production as put forth by Hopfield (1982) and Kanerva (1984).

Suppose that we wished to store a sequence of patterns in the SDM. Let the pattern vectors
be given by (pl,p2 ..... pM). This sequence of patterns could be stored by having each patlern
point to the next pattern in the sequence. Thus, for _ SDM, the patterns would be stored as
input-output pairs (aa,da), where aa= pa and d a= p,U.t for ¢z = 1,2,3,...,M-1. Convergence to
this sequence works as follows: If the SDM is presented with an address that is close to pl the
read data will be close to p2. Iterating the system with p2 as the new input address, the read data
will be even closer to p3. As this iterative process continues, the read data will converge to the
stored sequence, with the next pattern in the sequence being presented at each time step.

The convergence statistics are essentially the same for sequental patterns as that shown
above for autoassociative patterns. Presented with pa as an input address, the signal for the stored

sequence is found as before

<signal> = bn pa+l. (21)

Thus, given pa, the read data is expected to be p._+l. Assuming that the patterns in the sequence
are randomly chosen, the mean value of the noise ts zero, with variance

<o2> = (M-l)52m (1+52(m -1)). (22)

Hence, the length of a sequence that can be stored in the SDM increases linearly with m for large
r?l.

Attempting to store sequences like this in the Hopfield model is not very successful due to
the asynchronous updating use in the Hopfield model A synchronously updated outer-product
model (for example [6]) would work just as described for the SDM, but it would still he limited to
storing fraction of the word size as the maximum sequence length.

Another method for storing sequences in Hop field-like networks has been proposed indepen-
dently by Kleinfeld 22 and Sompolinsky and Kanter. 23 These models relieve the problem created by
asynchronous updating by using a time-delayed sequential term. This time-delay storage algorithn_
has different dynamics than the synchronous SDM model. In the time-delay algorithm, the system
allows time for the units to relax to the first pattern before proceeding on to the next pattern,
whereas in the synchronous algorithms, the sequence is recalled imprecisely from imprecise input
for the first few iterations and then correctly after that. In other words, convergence to the

sequence takes place "on the fly" in the synchronous models -- the system does not wait to zero
in on the first pattern before proceeding on to recover the following patterns. This allows the syn-
chronous algorithms to proceed k times as fast as the asynchronous time-delay algorithms with
half as many (variable) matrix elements. This difference should be able to be detected in biological

systems.

TIME DELAYS AND HYSTERESIS: FOLDS

The above scenario for storing sequences is inadequate to explain speech recognition or pat-
tern generation. For example, the above algorithm cannot store sequences of the form ABAC, or
overlapping sequences. In Kanerva's original work, be included the concept of time delays as a
general way of storing sequences with hysteresis. The problem addressed by this is the following:
Suppose we wish to store two sequences of patterns that overlap. For example, the two pattern
sequences (a,b,c,d,e,f,...) and (x,y,z,d,w,v,...) overlap at the pattern d. If the system only has
knowledge of the present state, then when given the input d, it cannot decide whether to output w
or e. To store two such sequences, the system must have some knowledge of the immediate past.
Kanerva incorporates this idea into the SDM by using "folds." A system with F+I folds has a
time history of F past states. These F states may he over the past F time steps or they may go
even further back in time, skipping some time steps. The algorithm for reading from the SDM with
folds becomes

d(t+l) = g(C°'s(t) + Cl"s(t--xt) + • • " + C p's(t-xF)), (23)



where s(t--'c_=O,(Aa(t--'Cp)). Tuo store the Q pattern sequences (p(,p_ ..... p_'),
(p_,p_0 , 2 1 2• • , i}2 ).... (PQ,PQ ..... pQQ), construct the matrix of the _'* fold as follows:

Ma-I V._

C Is -- wp_ _ p_÷l×s a P, (24)
¢ml 1_1

where any vector with a superscript less than 1 is taken to he zero, Sa_'4" = 0,(A pa_'%), and wp is a
weighting factor that would normally decrease with increasing [$.

Why do,[bese folds work? Suppose that the system is presented with the pattern sequence

(p_,p?2 ..... p_'l), with each pattern presented sequentially as input until the "oF time step. For
simplicity, assume mat w_ = ! for all 13. Each term in Eq. (39) will contribute a signal similar to
the signal for the single-f_ld system. Thus, on the _'* time step, the signal term coming from Eq.
(39) is <signal(t+l)> = Fbnp_ +t. The signal will have this value until the end of the pattern
sequence is leached. The mean of the noise terms is zero, with variance
<noise2> = F(M-l)52m(l+52(m-l)). Hence, the signal-to-noise ratio is qF- times as strong as it
is for the SDM without folds.

Suppose further that the second stored ttem sequence happens to match the first stored
sequence at t = _. The signal term would then

signal(t + 1) = F _m p _+t + &n p_+t. (25)

With no history of the past (F = 1) the signal is split between p_+! and p2_÷l, and the output is
ambiguous. However, for F>I, the signal for the first pattern sequence dominates and allows
retrieval of the remainder of the correct sequence. This formulation allows context to aid in the
retrieval of stored sequences, and can differentiate between overlapping sequences by using time
delays.

The above formulation is still too simplistic in terms of being able to do real recognition
roblems such as speech recognition. First, the above algorithm can only recall sequences at a

ed time rate, whereas speech recognition occurs at widely varying rates. Second, the above
algorithm does not allow for deletions in the incoming data. For example "seqnce" can be recog:
nized as "sequence" even though some letters are missing. Third, as pointed out by Lashley "_'
speech processing relies on hierarchical structures.

Although Kanerva's original algorithm is too simplistic, a straightforward modification
allows retrieval at different rates with deletions. To achieve this, we can add on the time-delay
terms with weights which axe smeared out in time. Kanerva's (1984) formulation can thus be
viewed as a discrete-time formulation of that put forth by Hopfield and Tank, (1987). 25 Explicitly
we could write

p P
h = (26)

where the coefficients WBt are a discrete approximation to a smooth function which spreads the
delayed signal out over time. As a further step, we could modify these weights dynamically to
optimize the signal coming out. The time-delay patterns could also be placed in a hierarchical
structure as in the matched filter avalanche structure put forth by Grossberg et al. (1986). 26

CORRELATED PATrERNS

In the above associative memories, all of the patterns were taken to be randomly chosen,
uniformly distributed binary vectors of length n. However, there are many applications where the
set of input patterns is not uniformly distributed; the input patterns are correlated. In mathematical
terms, the set ic of input patterns would not be uniformly disuibuted over the entire space of 2"
possible patterns. Let the probability distribution function for the Hamming distance between two
randomly chosen vectors pa and pP from the distribution lc be given by the function p(d(pa-pp)),
where d(x-y) is the Hamming distance between x and y.

The SDM can be generalized from Kanerva's original formulation so that correlated input
patterns can be associated with output patterns. For the moment, assume that the distribution set
!c and the probability density function p(x) are known a priori. Instead of constructing the rows
of the matrix A from the entire space of 2_ patterns, construct the rows of A from the dis_bution

Adjust the Hamming distance r so that _--bn- = constant number of locations are selected.



In other words, adjust r so that the value of 8 is the same as given above, where _ is determined
by

r

p(x)dx
6 = _ (27)

2"

This impliesthatr would have tobe adjusteddynamically.This could be done, forexample, by a
feedback loop. Circuitryfor doing thisiseasilybuilt,"_ and a similarstructureappears in the
Golgi cellsin the Cerebellum.zT.

Using the same distributionfor the rows of A as the distributionof the patternsin _:,and

using (27) to specifythe choice of r, allof the above analysisisapplicable(assuming randomly
chosen outputpatterns).Ifthe outputsdo not have equal Isand -Is the mean of the noise isnot
0. However, ifthe distributionof outputsisalsoknown, the system can stillbe made to work by
storingI/p+ and I/p_ for Isand -Is respectively,where p, isthe probabilityof gettinga I or a -I
respectively.Using thisstoragealgorithm,allof the above formulashold,(as long asthe distribu-
tion issmooth enough and not extremely dense). The SDM willbe able to recoverdata stored
with correlatedinputswith a fidelitygiven by Equation(17).

What ifthe distributionfunction_cisnot known a priori? In thatcase,we would need to

have the matrixA learnthedistributionp(x). There are many ways to buildA to mimic p. One
such way istostartwith a random A matrix and modify theentriesof _ randomly chosen rows of
A at each step according to the statistics of the most recent input patterns. Another method is to
use competitive learning zs-3° to achieve the proper distribution of At.

The competitive learning algorithm is a method for adjusting the weights Ai, between the
first and second layer to match this probability density function, p(x). The i" row 'of the address
matrix A can be viewd as a vector A;. The competitive learning algorithm holds a competition
between these vectors, and a few vectors that are the closest (within the Hamming sphere r) to the
input paUem x are the winners. Each of these winners are then modified slightly in the direction
of x. For large enoug_ m, this algorithm almost always converges to a distribution of the A; that
is the same as p(x)._ The updating equation for the selected addresses is just

A_ _' = A °td- _L(A°ta - x) (28)

Note for _,= I,thisreduces to the so-calledunary representationof Baum et al.3n Which gives

the maximum efficiencyinterms of capacity.

DISCUSSION

The above analysis said nothing about the basins of attraction of these memory states. A
measure of the performance of a content addressable memory should also say something about the
average radius of convergence of the basin of attraction. The basins are in general quite compli-
cated" and have been investigated numerically for the unclipped models and values of n and m
ranging in the 100s. 2L The basins of attraction for the SDM and the d=l model are very similar in
their characteristics and their average radius of convergence. However, the above results give an
upper bound on the capacity by looking at the fixed points of the system (if there is no fixed point,
there is no basin).

In summary, the above arguments show that the total information stored in outer-product
neural networks is a constant times the number of connections between the neurons. This constant

is independent of the order of the model and is the same (WR2b) for the SDM as well as higher-
order Hopfield-type networks. The advantage of going to an architecture like the SDM is that the
number of patterns that can be stored in the network is independent of the size of the pattern,

whereas the number of stored patterns is limited to a fraction of the word size for the Willshaw or
Hopfield architecture. The point of the above analysis is that the efficiency of the SDM in terms
of information stored per bit is the same as for Hopfield-type models.

It was also demonstrated how sequences of patterns can be stored in the SDM, and how time
delays can be used to recover contextual informatson. A minor modification of the SDM could be
used to recover time sequences at slightly different rates of presentation. Moreover, another minor
modification allows the storage of correlated patterns in the SDM. With these modifications, the
SDM presents a versatile and efficient tool for investigating properties of associative memory.
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